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Vorticity formulations for the incompressible Navier–Stokes equations have cer-
tain advantages over primitive-variable formulations including the fact that the num-
ber of equations to be solved is reduced. However, the accurate implementation of
the boundary conditions seems to continue to be an impediment to the acceptance
and use of numerical methods based on vorticity formulations. Velocity boundary
conditions can be implicitly satisfied by maintaining the kinematic compatibility of
the velocity and vorticity fields as described by the generalized Helmholtz decom-
position (GHD). This can be accomplished in one of two ways by either solving
for boundary vorticity (leading to a Dirichlet boundary condition for the vorticity
equation) or solving for boundary vortex sheet strengths (leading to a Neumann
condition). In the past, vortex sheet strengths have often been determined by solv-
ing an over-specified set of linear equations. The over-specification arose because
integral constraints were imposed on the vortex sheet strengths. These integral con-
straints are not necessary and typically are included to mitigate errors in determining
the vortex sheet strengths themselves. Further, the constraints overspecify the linear
system requiring least-squares solution techniques. To more accurately satisfy both
components of the velocity boundary conditions, a Galerkin formulation is applied
to the generalized Helmholtz decomposition. This formulation implicitly satisfies
an integral constraint that is more general than many of the integral constraints that
have been explicitly imposed. Two implementations of the Galerkin GHD are con-
sidered in the current work, one based on determining the boundary vorticity and one
based on determining the boundary vortex sheet strengths. A finite element method
(FEM) is implemented to solve the vorticity equation along with the boundary data
generated from the GHD. c© 2001 Academic Press
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1. INTRODUCTION

Vorticity formulations of the incompressible Navier–Stokes equations have distinct ad-
vantages over velocity-pressure formulations. Some of these advantages include a reduction
in the number of equations to be solved through the elimination of the pressure variable,
identical satisfaction of the compressibility constraint and the continuity equation, an im-
plicitly higher-order approximation of the velocity components, and, for exterior flow prob-
lems, a reduced computational domain. These advantages remain largely untapped how-
ever, since questions concerning how to determine appropriate boundary conditions for
vorticity formulations have not been fully resolved [21]. The problem is that the boundary
conditions for the Navier–Stokes equations are typically given in terms of velocities, but
boundary conditions in terms of vorticity are required for vorticity formulations. Thus, it
is necessary to deduce vorticity boundary conditions not only from the velocity boundary
conditions but also from the vorticity field in the domain. Vorticity boundary conditions
can be given in terms of either prescribed vorticity or prescribed normal gradient (flux) of
vorticity. The Navier–Stokes equations indicate that vorticity is created at the boundary in
a way that satisfies the velocity boundary conditions [2]. However, neither the boundary
vorticity nor its flux is generally knowna priori, and hence, additional kinematic and, in the
case of vorticity flux, dynamic equations must be introduced to relate boundary conditions
to vorticity creation.

Many schemes to determine vorticity boundary conditions have been proposed com-
prising a wide range of different approaches. Approaches relying on kinematics include
streamfunction-vorticity methods [1, 13, 22, 24–26], velocity–vorticity Cauchy methods
[7], vorticity–velocity Poisson equation methods [5], Biot–Savart methods [4], and gener-
alized Helmholtz decomposition (GHD) methods [18, 19, 28–32]. Other approaches are
based on dynamics (Navier–Stokes equations) on the boundary [12, 33]. Several reviews
have been written on this subject including those of Gresho [9], Puckett [23], Leonard [14,
15], and Sarpkaya [27].

Despite this large body of research, several questions concerning vorticity creation remain
either unresolved or obscure. These questions include the following:

• Is there a unique specification of boundary vorticity or flux to satisfy velocity boundary
conditions in each coordinate direction?
• Are integral constraints necessary when using the GHD to resolve vorticity created on

the boundary, and how can these constraints be implemented in a numerical algorithm?
• Should both normal and tangential components of the velocity boundary conditions

be imposed or is it sufficient to impose only one component? If only one, which one?
• Are kinematics sufficient to specify vorticity flux creation or must dynamic information

be used?
• Is the value of vorticity on the boundary (Dirichlet condition) or its normal derivative

(Neumann condition) the appropriate boundary condition?

This paper discusses an approach which resolves many of these questions regarding
vorticity boundary conditions.

Many of the above questions are interrelated. For example, the questions dealing with the
unique specification of vorticity and imposition of integral constraints are related in that the
integral constraint overspecifies the system of equations generated from the GHD. Hence,
the solution may no longer be unique. Many investigators indicate that an overspecified set
of equations must be solved to determine vorticity generation on the boundary including
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an integral constraint, although the precise mathematical justification for such constraints
is not clear. For example, Wu [32] indicates that the linear system of equations based on
a Helmholtz decomposition is rank deficient. For closure, Wu specifies that the volume
integral of the vorticity field must be zero. Wuet al.[33] claim that a constraint is needed to
exclude spurious solutions that arise because of the fact that the vorticity equation contains
higher order derivatives of velocity. Sarpkaya [27] uses a constraint based on the requirement
that the pressure be single-valued on the boundary. Koumoutsakoset al. [13] also indicate
that an integral constraint is needed to obtain a unique solution; they use a constraint based
on Kelvin’s theorem. Quartapelle and Valz-Gris [25] indicate that in order to satisfy both
normal and tangential velocity boundary conditions for streamfunction-vorticity methods,
vorticity created on the boundary must satisfy anad hocintegral constraint.

The implementation of any integral constraint in addition to the GHD requires solving
an overspecified system of linear equations. Further, at each point on the boundary, two
components of vorticity or vorticity flux are unknown. Over-specification can also occur
by attempting to determine the unknown vorticity components using velocity boundary
conditions in all coordinate directions.

In this paper, an attempt is made to resolve many of the questions raised above. Vorticity
creation either in terms of vortex sheet strengths or boundary vorticity can be accurately
specified from purely kinematic considerations without the imposition of any integral con-
straints. However, in the case of vortex sheet strengths, dynamic considerations are required
to relate the vortex sheet strengths to the vorticity flux at the boundary. Even though at each
point along the boundary there are more components of specified velocity than unknown
components of either the vortex sheet strengths or boundary vorticity, a unique specification
of the vorticity flux or boundary vorticity exists that satisfies all components of the velocity
boundary conditions.

Two approaches for determining vorticity boundary conditions are considered in this
paper. Both are based on a Galerkin implementation of the generalized Helmholtz decom-
position (GHD). In the first approach, the GHD is augmented to include the possibility of
vortex sheets along the boundary. The vortex sheets are then related to the vorticity flux
yielding Neumann boundary conditions for the vorticity equation. In the second approach,
boundary vorticity is calculated directly from the GHD yielding Dirichlet boundary condi-
tions. In both cases, it is shown that the normal component of the GHD yields a rank-deficient
discretized system of equations, whereas the tangential component implicitly satisfies an
integral constraint. The Galerkin implementation of the GHD is shown to satisfy the velocity
boundary conditions far better than the more common point-collocation methods.

The ultimate purpose of resolving the issues of accurate specification of the vorticity
boundary conditions is to implement a method for determining these boundary conditions
into a numerical algorithm based on the vorticity form of the Navier–Stokes equations. A
Galerkin finite element method is presented for solving the vorticity equation. The accuracy
of the formulation is demonstrated by considering the driven-lid cavity problem.

2. MATHEMATICAL FORMULATION

The vorticity form of the Navier–Stokes equations for an incompressible flow in two
dimensions is given by

∂ Eω
∂t
+ (Eu · ∇)Eω = ν∇2Eω, (1)
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where Eu is the velocity field,Eω = ∇ × Eu is the vorticity field, t is time, andν is the
constant kinematic fluid viscosity. In the course of solving Eq. (1), the velocity field,Eu,
must be determined from the vorticity field,Eω, and the creation of vorticity on the bound-
ary must be determined from the velocity boundary conditions. In the present formulation,
determining both the interior velocity field and the creation of vorticity on the boundary are
accomplished in a unified manner using the generalized Helmholtz decomposition (GHD).

The GHD can be viewed as the infinite domain solution to the vector Poisson equation

∇2Eu = −∇ × Eω +∇D, (2)

obtained by performing the curl operation on the equation defining vorticity and identifying
D = ∇ · Eu. In the present work,D ≡ 0 since only incompressible flows are considered. The
GHD has been derived independently by several investigators including Wu and Thompson
[29], Morino [18] (based on work by Bykhovskiy and Smirnov [3]), Uhlman and Grant [28]
(based on work by Morse and Feshback [20]), and Meir and Schmidt [17]. It is interesting
to note that none of these investigators reference one another except Morino who briefly
notes some of Wu’s work. A complete derivation of the GHD can be found in Kempkaet al.
[11].

The GHD for an incompressible fluid in two dimensions is given by

α(Ex)Eu(Ex) =
∫
Ä

Eω(Ey)× Er (Ex, Ey)
r 2(Ex, Ey) dÄ(Ey)+

∫
0

[Eu(Ey)× En(Ey)] × Er (Ex, Ey)
r 2(Ex, Ey) d0(Ey)

−
∫
0

[Eu(Ey) · En(Ey)]Er (Ex, Ey)
r 2(Ex, Ey) d0(Ey), (3)

where En is the unit normal vector on the boundary (pointing away from the fluid),Ä

represents the two-dimensional domain, and0 is the boundary ofÄ. The coefficientα is a
function of the location of the field pointEx. For field points outside of the domain,α = 0;
for field points in the interior of the domain,α = 2π ; for field points on smooth portions
of the boundary,α = π . At edges or corners,α can be related to a local internal angle.
However, in the following development, a method is developed which circumvents having
to evaluateα explicitly.

The GHD is valid only for certain kinematically admissible interior vorticity fields,Eω,
and velocity boundary conditions. For example, assume Eq. (3) is satisfied at a given time
τ , and consider an explicit time integration of the vorticity equation (Eq. (1)). After the
vorticity field has been transported but without properly taking into account the production
and transport of vorticity at the boundary, Eq. (3) is no longer generally satisfied. There
are essentially two ways that kinematic compatibility can be reestablished by satisfying the
GHD.

Perhaps the most direct approach is to use the GHD to calculate updated values of the
boundary vorticity [10, 30]. This leads to Dirichlet conditions for the vorticity equation. For
two-dimensional problems, there are two components of the GHD but only one component
of unknown vorticity. Wu [32] states that the normal and tangential component of the GHD
are equivalent and either can be used to determine the boundary vorticity. In the following,
it will be shown that, for Galerkin implementations, the normal component of the GHD
leads to rank deficiency of the discretized linear system of equations. Despite the fact that
the GHD represents a Fredholm equation of the first kind for the vorticity, the singular
nature of the kernel function leads to a generally well-conditioned linear equation set.
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A more subtle use of the GHD to reestablish kinematic compatibility is to represent the
circulation associated with the newly created vorticity by a vortex sheet as proposed by
Lighthill [16]. There is a jump in tangential velocity across the vortex sheet equal to the
strength of the sheet. On the fluid side of the sheet, the tangential velocity is determined
from the vorticity within the domain and the velocity boundary conditions, while on the
nonfluid side, the velocity is specified by the boundary conditions. Conveniently enough,
the boundary integrals in Eq. (3) represent the motion induced by vortex sheets and source
sheets with strengthsEγ andσ , respectively, given by

Eγ = En× (Eun f − Eu) and σ = En · (Eun f − Eu), (4)

where, in the case of a stationary boundary, the nonfluid velocityEun f = 0 by definition.
That is, the boundary integrals represent jumps in normal and tangential velocity on the
boundary.

Circulation created on the boundary can be included by rewriting Eq. (3) to include the
vortex sheet of strengthEγ as shown below

α(Ex)[Eu(Ex)− Eγ (Ex)× En(Ex)] =
∫
Ä

Eω(y)× Er (Ex, Ey)
r 2(Ex, Ey) dÄ(Ey)

+
∫
0

[(Eu(Ey)− Eγ (Ey)× En(Ey))× En(Ey)] × Er (Ex, Ey)
r 2(Ex, Ey) d0(Ey)

−
∫
0

[Eu(Ey) · En(Ey)]Er (Ex, Ey)
r 2(Ex, Ey) d0(Ey). (5)

By adding a vortex sheet along the boundary which accounts for the production of vorticity,
the velocity boundary conditions can be satisfied after an explicit time step of the vorticity
equation by exactly cancelling the induced slip velocity.

The solution of Eq. (5) yields the vortex sheet strengthsEγ , representing the creation of
vorticity during a given time step. Although the determination of the vortex sheet strengths
can be determined from purely kinematical considerations, the relationship between the
vortex sheet strength and the flux of vorticity from the boundary into the domain depends
on dynamics.

The definition of the vortex sheetEγ is given by

Eγ = limω→∞,dn→0Eωτ dn. (6)

The subscriptτ in Eωτ indicates that the vorticity on the boundary must be in the tangential
direction. In discreet form

1Eωτ = Eγ /1n, (7)

where1n represents the distance over which the vorticity will diffuse in a time interval
1t . Integrating the vorticity equation over a small volumeV = A1n and fromt to t +1t
yields ∫ t+δt

t

∫
V

D Eωτ
Dt

dV dt=
∫ t+δt

t

∫
V
ν∇2Eωτ dV dt. (8)
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At solid boundaries where vorticity is produced, the flow is parallel in the limit as1n→ 0,
and therefore, the convective flux of vorticity can be neglected in Eq. (8). Hence, using the
divergence theorem

∫ t+δt

t

∫
V

∂ Eωτ
∂t

dV dt=
∫ t+δt

t

∫
A
ν
∂ Eωτ
∂n

d A dt. (9)

This equation can be written in discrete form using a first-order approximation for the time
derivative as

1EωτV = ν ∂ Eωτ
∂n

A1t. (10)

Hence, using Eq. (7), the following expression is obtained:

∂ Eωτ
∂n
= Eγ
ν1t

. (11)

That is, the vortex sheet strength can be related to the normal flux of vorticity on the boundary
which can now be used as a Neumann boundary condition for the vorticity equation.

3. NUMERICAL IMPLEMENTATION

A Galerkin implementation of the GHD for determining either boundary vorticity or
vortex sheet strengths is first presented in this section followed by some implementation
issues associated with the GHD. Next, a Galerkin finite element method (FEM) for solving
the vorticity form of the Navier–Stokes equations is presented. Finally, an outline of the
numerical algorithm for solving the vorticity equation is presented.

3.1. Galerkin Approximation of the GHD

One reason that may have been the cause of previous researchers imposing constraint
equations on the GHD, such as Stokes theorem, is that the GHD itself was poorly approxi-
mated. Excess vorticity created at each time step can accumulate in the interior of the flow
domain causing a degradation of the solution over time. As shown in Section 3.3, a Galerkin
approximation of the GHD provides far more accurate results compared to the more popular
point collocation methods.

A uniform approach can be taken to the discretization of either form of the GHD,
that is, with or without vortex sheet strengths (Eqs. (3) and (5)). LetEv represent either
Eu or Eu− Eγ × En depending on whether the Neumann (vortex sheet solution) or Dirichlet
(boundary vorticity solution) formulation is desired. In either case, the GHD can be written
as

α(Ex)Ev(Ex) =
∫
Ä

Eω(y)× Er (Ex, Ey)
r 2(Ex, Ey) dÄ(Ey)+

∫
0

[Ev(Ey)× En(Ey)] × Er (Ex, Ey)
r 2(Ex, Ey) d0(Ey)

−
∫
0

[Ev(Ey) · En(Ey)]Er (Ex, Ey)
r 2(Ex, Ey) d0(Ey). (12)
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The domainÄ is discretized into finite elements and the boundary of the domain0 is
discretized into boundary elements. Within theeth finite element, thej th component ofEω
is approximated as

ωe
j (Ey) =

4∑
l=1

ωe
l j Sl (Ey), (13)

whereωe
l j represents the value of thej th component ofEω at thel th node within theeth

finite element, andSl represents the biliniear Lagrangian shape function associated with
the finite element. Similarly, within theeth boundary element, thej th component ofEv is
approximated as

ve
j (Ey) =

2∑
l=1

ve
l j Nl (Ey), (14)

where, in this case,ve
l j represents the value of thej th component ofEv at the l th node

within theeth boundary element, andNl represents the linear Lagrangian shape function
associated with the boundary element. It is certainly possible to expand the boundary and
finite element libraries without much difficulty but as seen in the results the linear boundary
elements and bilinear finite elements provide excellent results.

Substituting Eqs. (13) and (14) into Eq. (12), the discretized form of the GHD can be
written using indicial notation as

α(Ex)vi (Ex) =
NFE∑
e=1

∫
Äe

ei jkωl j Sl (Ey)dk

dr dr
dÄ+

NBE∑
e=1

∫
0e

eimpemjkv
e
l j Nl (Ey)nkdp

dr dr
d0

−
NBE∑
e=1

∫
0e

ve
l j Nl (Ey)nj di

dr dr
d0, (15)

whereei jk is the unit alternating tensor,NFE represents the number of finite elements,NBE
represents the number of boundary elements, anddi = xi − yi , whereEx = (x1, x2) and
Ey = (y1, y2).

Using the properties of the unit alternating tensor, this equation can be rewritten as

α(Ex)vi (Ex) =
NFE∑
g=1

∫
Äg

ei jkω
g
l j Sl dk

dr dr
dÄ

+
NBE∑
e=1

∫
0e

ve
lk Nl dkni − ve

li Nl dknk − ve
lk Nl di nk

dr dr
d0. (16)

It is possible at this point to multiply the above equation by the nodal basis functions
associated with the boundary element shape functionsNl and perform a second integral
over the boundary0 in order to determine a Galerkin approximation of the GHD. However,
a single integral would result on the right-hand side of the equation, whereas a double
integral would result on the left-hand side of the equation. This is cumbersome, from both
a programming and a bookkeeping point of view.
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FIG. 1. Deformation of the domainÄ to exclude the field pointEx = (x1, x2). The deformed domain has
boundary0 − 0∗ + 0ε .

The termα(Ex)vi (Ex) can be incorporated directly into the boundary integral by considering
rigid body arguments [6]. That is, ifvi is constant, then the associated vorticity field is
identically zero. Hence,

α(Ex)v1 = −v1

∫
0

dknk

dr dr
d0 + v2

∫
0

d2n1− d1n2

dr dr
d0 (17)

α(Ex)v2 = −v2

∫
0

dknk

dr dr
d0 − v1

∫
0

d2n1− d1n2

dr dr
d0. (18)

Consider the terms ∫
0

d2n1− d1n2

dr dr
d0 =

∫
0

Es · En d0, (19)

where by definitionEs= (d2/dr dr ,−d1/dr dr ). The domainÄ and boundary0 can be de-
formed to exclude the field pointEx as shown in Fig. 1. As seen in the figure, the boundary
of the deformed domainÄd is given by0 − 0∗ + 0ε . (Note, a similar keyhole cutout of
the domain can be performed for field pointsEx in the interior of the domain.) The reason
for deforming the domain is so that the integrand in Eq. (19) is continuously differentiable
on Äd + 0 − 0∗ + 0ε , allowing the application of the divergence theorem. Within the
deformed domain, the divergence theorem requires∫

0−0∗
d2n1− d1n2

dr dr
d0 +

∫
0ε

d2n1− d1n2

dr dr
d0 =

∫
Äd

∇ · EsdÄ = 0 (20)

since∇ · Es= 0.
As shown in Fig. 1 on0ε , d2/

√
dr dr = − sinθ , d1/

√
dr dr = − cosθ , n1 = − cosθ , and

n2 = − sinθ . Hence,∫
0ε

d2n1− d1n2

dr dr
d0 =

∫
0ε

sinθ cosθ − cosθ sinθ√
dr dr

d0 = 0. (21)

In the limit asε → 0,0 − 0∗ → 0, and hence∫
0

d2n1− d1n2

dr dr
d0 = 0. (22)



GALERKIN IMPLEMENTATION OF THE GHD 223

Therefore, inserting Eq. (22) into either Eq. (17) or Eq. (18) yields

α(Ex) = −
∫
0

dknk

dr dr
d0. (23)

Using Eqs. (22) and (23), Eq. (16) can be rewritten as

0 =
NFE∑
g=1

∫
Äg

ei jkω
g
l j Sl (Ey)dk

dr dr
dÄ

+
NBE∑
e=1

∫
0e

[
ve

lk Nl (Ey)− vi (Ex)
]
(dkni − di nk)−

[
ve

li Nl (Ey)− vi (Ex)
]
dknk

dr dr
d0.

(24)

This formulation in Eq. (24) has several advantages over Eq. (16). First, the left-hand side
of Eq. (16) has been incorporated into the right-hand side so that only double integrals will
appear in the Galerkin implementation. Second, the coefficientα(Ex) does not need to be
explicitly evaluated. Finally, the Cauchy principle value integral appearing in Eq. (16) has
been regularized.

Now to obtain a Galerkin approximation, Eq. (24) is multiplied by the shape functions
Nm(Ex) and integrated over the the boundary0. Assuming thatNm(x) has support within
the f th boundary element and within that element

vk(Ex) |0 f= v f
lk Nl (Ex),

the discretized Galerkin approximation for the GHD is given by

0 =
NFE∑
g=1

∫
0 f

Nm(Ex)
∫
Äg

ei jkω
g
l j Sl (Ey)dk

dr dr
dÄ

+
NBE∑
e=1

∫
0 f

Nm(Ex)
∫
0e

[
ve

lk Nl (Ey)− v f
li Nl (Ex)

]
(dkni − di nk)

dr dr
d0

−
NBE∑
e=1

∫
0 f

Nm(Ex)
∫
0e

[
ve

li Nl (Ey)− v f
li Nl (Ex)

]
dknk

dr dr
d0. (25)

3.2. Implementation Issues for the Solution of the GHD

There is some bookkeeping associated with the implementation of Eq. (25) for solving
either the boundary vorticity or the vortex sheet strengths. In the case of solving for the
boundary vorticity, the interior nodal values of vorticity get assembled as part of the load
vector, whereas the boundary nodal values of vorticity represent the unknown vector. In the
case of solving for the vortex sheet strengths, the vectorEv comprises both known values of
Eu and unknown values ofEγ .

Beyond the improvement in satisfying the velocity boundary conditions afforded by
the Galerkin implementation of the GHD as shown in the following section, there is a
conceptual advantage as well. As discussed in Section 2, the discretized normal and
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tangential components of the GHD represent 2N equations inN unknowns, whereN
is the number of degrees of freedom used to represent the boundary vorticity or vortex
sheet strengths in discrete form. There have been questions in the past concerning which
component of the GHD (if either) is more appropriate for solving for the unknown source
densities.

First, consider the formulation to determine Neumann conditions by solving for the vortex
sheet strengths in the GHD. Starting from Eq. (16), a discretized form of the Galerkin GHD
can be written as∫

0 f

Nm(x)α(Ex)v f
li (Ex)Nl d0(Ex)

=
NFE∑
g=1

∫
0 f

Nm(x)
∫
Äg

ei jkω
g
l j Sl dk

dr dr
dÄ(Ey) d0(Ex)

+
NBE∑
e=1

∫
0 f

Nm(x)
∫
0e

ve
lk Nl dkni − ve

li Nl dknk − ve
lk Nl di nk

dr dr
d0(Ey) d0(Ex). (26)

SinceN1(x)+ N2(x) = 1 for any element, the column sum (col. sum) of the discretized
equations to solve for the unknown vortex sheet strengths using either the tangential or
normal component of the GHD is given by

col. sum=
∫
0s

α(Ex)p f
i (Ex)Ns(Ex)qi (Ex)0(Ex)

−
∫
0s

∫
0

pe
k(Ey)Ns(Ey)qi (Ex)(dkni (Ey)− di nk(Ey))

dr dr
d0(Ex) d0(Ey)

+
∫
0s

∫
0

pe
i (Ey)Ns(Ey)

dr dr
d0(Ex) d0(Ey), (27)

wherepe
i represents thei th component of the vectorEp = (−n2, n1)within theeth element,

Ns(Ey) is the nodal basis function composed ofN2(Ey) from the element on the left and
N1(Ey) from the element on the right,0s is the support of the nodal basis function, and the
vectorEq = (q1,q2) represents eitherEn or Et depending on whether the normal or tangential
component of the GHD is desired. That is, taking a column sum of the discretized equations
is essentially equivalent to choosing two adjacent0 f ’s in the inner integration in Eq. (26) and
integrating over the entire boundary in the outer integral (although the order of integration
is interchanged in Eq. (27)).

Since it has been shown that

∫
0

d2n1(Ex)− d1n2(Ex)
dr dr

d0(Ex) = 0

and

∫
0

dknk(Ex)
dr dr

d0(Ex) = α(Ey),
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choosingEq = En yields

col. sum= 2
∫
0s

α(Ey)Ns(Ey)pi (Ey)ni (Ey) d0(Ey) = 0, (28)

sinceEp is perpendicular toEn. On the other hand, choosingEq = Et yields

col.sum= 2
∫
0s

α(Ey)Ns(Ey)[(p2(Ey)n1(Ey)− p1(Ey)n2(Ey)] d0(Ex)

= 2
∫
0s

α(Ey)Ns(Ey) d0(Ey). (29)

These results can also be interpreted physically. The column sum can be related to the
integral over the boundary of the component of velocity corresponding toEq induced by
a vortex sheet within0s. For the normal component of velocity, this integral over the
boundary can be related to the integral over the domain of the divergence of the induced
velocity by the divergence theorem. However, the integral of the divergence of the induced
velocity over the domain must be zero since the flow field is incompressible. Similarly, for
the tangential component of the velocity, the integral of the tangential velocity over0 is
related to the induced vorticity over the domain by Stokes theorem which is nonzero.

Next, consider the formulation to determine Dirichlet boundary conditions by solving for
the boundary vorticity in the the GHD. Again, sinceN1(x)+ N2(x) = 1 for any element,
the column sum of the discretized equations to solve for the unknown boundary vorticity
using either component of the GHD is given by

col. sum=
∫
Äs

∫
0

Ss(Ey)(d1q2(Ex)− d2q1(Ex))
dr dr

d0(Ex) dÄ(Ey), (30)

whereÄs is the support of the nodal basis functionSs. This nodal basis function is typically
the union of two of the bilinear shape functions from adjacent finite elements except for
in corners of the domain. ChoosingEq = En, the column sum is again seen to be zero from
Eq. (22). ChoosingEq = Et and using Eq. (23), the column sum is given by

col. sum=
∫
Äs

α(Ey)Ss(Ey) dÄ(Ey). (31)

This analysis shows that, for either formulation (i.e., determining boundary vorticity
or vortex sheet strengths), the normal component of the GHD yields rank-deficient linear
systems. In either case, the accuracy of the numerical quadratures can be evaluated since
the integrals in Eqs. (29) and (31) are easy to evaluate analytically and can be compared
to the column sums resulting from the discretized GHD. However, there is an important
difference between Eqs. (29) and (31). In the case of Eq. (29),α(Ey) = π almost everywhere
since the outer integral in Eq. (27) is over a portion of the boundary. On the other hand, in
the case of Eq. (31),α(Ey) = 2π almost everywhere since the outer integral in Eq. (27) is
over a portion of the domain. Actual column sums are performed in Section 4 to show the
accuracy of the numerical integrations in the current implementation.
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FIG. 2. Induced normal and tangential velocity for the unit vorticity in unit square problem.

3.3. Accuracy Assessment of the Galerkin GHD

A simple benchmark problem is considered to show the improvement in the numeri-
cal results for the vortex sheet strengths using the Galerkin implementation of the GHD
compared to the results using the more traditional point-collocation implementation.
The benchmark problem consists of a uniform field of unit vorticity in the unit square.
The normal and tangential velocity components on one side of the unit square induced by
the unit vorticity is shown in Fig. 2. The objective of this benchmark problem is to solve
for the vortex sheet strengths on the boundary that cancel out the induced components of
velocity to essentially yield no-slip boundary conditions. Recall that, analytically, if the
tangential component of the velocity boundary condition is satisfied by the GHD, then
the normal component must also be satisfied. In discrete systems, however, the tangential
component of velocity is not identically satisfied exactly, and hence, neither is the normal
component. Nevertheless, errors in both components are shown to decrease with increasing
grid resolution.

The vortex sheet strengths as calculated by the Galerkin and point-collocation implemen-
tations of the GHD are shown in Fig. 3. As seen in the figure, the Galerkin results using 20
and 100 elements per side are visually indistinguishable. The results generated using the
point-collocation method are seen to to oscillate about the Galerkin results.

Possibly more important than the accuracy of the vortex sheet solution is how well the no-
slip boundary conditions are satisfied by the calculated vortex sheet strengths. The absolute
value of the tangential component of velocity computed along one half of the side of the unit
square is shown in Fig. 4. The velocity calculations are performed in postprocessing using
the calculated values of the vortex sheet strengths shown in Fig. 3. As seen in the figure, the
Galerkin implementation of the GHD yields errors that are over two orders of magnitude
smaller than the point-collocation implementation for the same discretization. In fact, the
errors using a Galerkin implementation and 20 linear elements per side yields far better
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FIG. 3. Vortex sheet strengths calculated for the uniform vorticity in unit square problem.

solutions than the point-collocation formulation using 100 linear elements per side. Similar
results are shown for the normal component of velocity in Fig. 5. Again, the boundary
condition in the normal direction is satisfied far better using the Galerkin method compared
to the point-collocation method. It is interesting to note that the magnitude of error for the
normal component of velocity is almost the same as for the tangential component even

FIG. 4. Absolute value of the tangential component of velocity along one half side of the unit square. Note,
zero is the prescribed value.
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FIG. 5. Absolute value of the normal component of velocity along one half side of the unit square. Note, zero
is the prescribed value.

though the actual condition imposed numerically was for the tangential component. In fact,
for the Galerkin implementation using 100 elements per side, it appears that the normal
velocity condition is satisfied slightly better than the tangential component.

3.4. Galerkin FEM Solution of the Vorticity Equation

The Galerkin finite element method used to solve the vorticity equation is outlined in this
section. Multiplying the 2-D vorticity equation in Eq. (1) by a weighting functionw, and
integrating over the domain yields

∫
Ä

w
∂ω

∂t
dÄ+

∫
Ä

[
uxw

∂ω

∂x
+ uyw

∂ω

∂y

]
dÄ−

∫
Ä

[
+ νw∂

2ω

∂x2
+ νw∂

2ω

∂y2

]
dÄ = 0,

(32)
whereux anduy are the components of the velocity vectorEu. Integrating the second-order
terms by parts (applying Green’s theorem), the weak form of the vorticity equation is written
as ∫

Ä

w
∂ω

∂t
dÄ+

∫
Ä

(
uxw

∂ω

∂x
+ uyw

∂ω

∂y

)
dÄ

+
∫
Ä

ν

(
∂ω

∂x

∂w

∂x
+ ∂ω
∂y

∂w

∂y

)
dÄ =

∫
0n

wqn d0, (33)

where0n is the portion of the boundary where Neumann conditions are prescribed and the
flux qn is defined by

qn = ν(En · ∇)Eω. (34)
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For Neumann problems,0n = 0 and using Eq. (11), the vorticity flux is given in terms
of the vortex sheet strengths as

qn = γ

1t
. (35)

For Dirichlet problems, the boundary vorticity is calculated directed from the GHD assuming
all vortex sheet strengths are zero.

The weak form of the vorticity equation is discretized by subdividing the domainÄ into
finite elements and subdividing the boundary0 into boundary elements. Using isoparametric
bilinear Lagrangian interpolation for the finite elements and linear interpolation for the
boundary elements, the weak form of the vorticity equation can be written in discrete form
as

NBE∑
i=1

we
i

∫
0e

Ne
i

Ne
k

1t
d0γ e

k

=
NFE∑
e=1

we
i

∫
Äe

Si Sj dÄ
dωe

j

dt
+

nfe∑
e=1

(
we

i ν

∫
Äe

∂Si

∂x

∂Sj

∂x
+ ∂Si

∂y

∂Sj

∂y
dÄ

)
ωe

j

+
nfe∑
e=1

(
we

i

∫
Äe

Si
∂Sj

∂x
ue

xkSk + Si
∂Sj

∂y
ue

ykSk

)
dÄωe

j , (36)

wherenfe is the number of finite elements,nbe is the number of boundary elements;we
i ,

ωe
i , ue

xi , ue
yi represent the value ofw, ω, ux, anduy, respectively, at thei th node within the

eth finite element;Si represents the bilinear finite element shape function;γ e
i represents

the value ofγ at thei th node within theeth boundary element; andNi represents the linear
boundary element shape function.

For convenience, the element capacitance matrices, element stiffness matrices, and ele-
ment load vectors are defined by

(Ce)i j =
∫
Äe

Se
i Se

j dÄ (37)

(
K e

x

)
i j
= ν

∫
Äe

∂Se
i

∂x

∂Se
j

∂x
dÄ (38)

(K e
y)i j = ν

∫
Äe

∂Se
i

∂y

∂Se
j
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dÄ (39)

(
K e

u

)
i j
=

4∑
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(Fe)i = 1

1t
γ e

k

∫
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Ne
i Ne

j d0. (42)
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The discretized weak form can now be written in the following convenient form

nfe∑
e=1

we
i (C

e)i j ω̇
e
j +

nfe∑
e=1

we
i

{(
K e

x

)
i j +

(
K e

y

)
i j +

(
K e

u

)
i j +

(
K e
v

)
i j

}
ωe

j =
nbe∑
e=1

we
i (F

e)i .

(43)

After assembly and dividing through by the Galerkin vector{w}, the assembled finite
element equations become

[Kx + Ky + Ku + Kv]{ω} + [C]{ω̇} = {F}. (44)

The discretized equation set (Eq. (44)) is inherently nonlinear since the matricesKu

andKv contain the unknown velocity field components. In the current implementation, the
velocity components inKu and Kv are evaluated using Eq. (3) for the Dirichlet problem
or Eq. (5) for the Neumann problem. Time is discretized using an Euler explicit integrator
which is first-order accurate in time.

3.5. Outline of the Numerical Algorithm

The numerical algorithm for solving the vorticity form of the Navier–Stokes equations
is briefly outlined in this subsection. First, the vortex sheet strengths or boundary vorticity
is calculated using the tangential component of the Galerkin form of the GHD (Eq. (25))
to determine either Neumann or Dirichlet boundary conditions for the vorticity equation.
Next, the internal velocities at the finite element interior nodes are evaluated using the
regular form of the GHD, either Eq. (3) or (5). Finally, to complete the time step, the
vorticity field is transported by solving the explicit form of the finite element equations.
After the explicit convection of vorticity, the flow field is again kinematically incompatible
without incorporating newly formed vorticity or vortex sheet strengths at the boundary.
This kinematic incompatibility is resolved by going back to the first step.

In the current implementation of the numerical algorithm, both the discretized FEM
equations and discretized GHD equations are solved using an LU solver. The decomposition
is done outside the time loop. Further, all integrals for evaluating the interior velocities
are also performed outside the time loop. Hence, within the time loop, the majority of
calculation is matrix–vector multiplication and backward substitution.

4. NUMERICAL EXAMPLE

The impulsively started driven square cavity problem at a Reynolds number of 400
is considered to demonstrate the reliability and accuracy of the overall algorithm. This
example is difficult numerically because of the discontinuous boundary conditions where
the top lid meets the sidewalls and because of the discontinuity between initial and boundary
conditions. For a unit cavity, steady state is achieved in approximately 40 seconds. The
current results are generated using a constant time step of 0.001, 1600 finite elements, and
160 boundary elements (41× 41 uniform grid) unless specified otherwise. The measured
CPU time for all calculations performed outside of the time loop was 93.4 seconds. The
CPU time per time step within the loop was 2.9 seconds showing the efficiency of the
current approach for running through the transient.
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FIG. 6. Streamline pattern for flow in driven cavity< = 400.

The streamline pattern and vorticity field generated using the current formulation with
Neumann boundary conditions, (that is, solving for the vortex sheet strengths), are shown
in Figs. 6 and 7. The velocity and vorticity fields are essentially the same at steady state
for both the Dirichlet and Neumann vorticity formulations since, at steady state, the GHD
should be satisfied after an explicit step in the vorticity equation without any vortex sheets.
The results shown in Figs. 6 and 7 qualitatively look the same as the results generated
by Ghia, Ghia, and Shen [8], who used a multigrid finite difference method (FDM) on a
129× 129 grid.

FIG. 7. Vorticity contours for flow in driven cavity< = 400.
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FIG. 8. Steady-state results foru-component of velocity along the vertical line through the geometric center
of the cavity.

To demonstrate the agreement between the current results and the multigrid results, cal-
culated values for theu-component of velocity along the vertical line through the geometric
center of the cavity are shown in Fig. 8. Five sets of numerical results are shown in the
figure. The results generated using the Dirichlet and Neumann vorticity formulations on a
41× 41 grid are visually indistinguishable from the results generated by the multigrid finite
difference method on a 129× 129 grid. The convergence of the Dirichlet vorticity forma-
tion can be seen qualitatively by viewing the 21× 21 grid and 41× 41 grid results. Finer
discretizations for the vorticity formulations produce results which are indistinguishable
from the 41× 41 grid results. Finally, results generated by a primitive-variables FEM code
using 400 bi-quadratic 9-node quadrilateral elements is also shown. The primitive-variable
FEM code contained the identical set of nodes as the 41× 41 vorticity FEM grids. It is
interesting to note that the 21× 21 vorticity FEM results, which contains approximately 1/4
of the grid points compared to the primitive-variable FEM grid and uses bilinear compared
to biquadratic elements, provided more accurate results than the primitive-variable FEM
code.

To further show the accuracy of the current approach for solving the vorticity equation,
quantitative comparisons are made with the multigrid results for the location and extent of
primary and corner vortices in Table I. The following comparisons are made between the
current Dirichlet FEM vorticity solutions using a 41× 41 uniform grid and the multigrid
finite difference solutions of Ghiaet al. [8] on a 129× 129 grid. As seen in Table I, the
comparison between the FEM and FDM results is excellent. It is particularly noteworthy
that the solutions using the vorticity formulation are able to provide an excellent resolution
of the two bottom secondary vortices on a relatively coarse grid.

The vortex sheet formulation of the GHD yields a Fredholm integral equation of the
second kind while the boundary vorticity formulation yields a Fredholm integral equation
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TABLE I

Comparison of Primary and Secondary Vortex Data between

Dirichlet FEM Vorticity Solution and Primitive Variable FDM So-

lution of Ghia et al. [8]

Dirichlet FEM Results Multigrid FDM Results

(x,y) coordinates (0.5535,0.6066) (0.5547,0.6055)
of primary vortex

Length of bottom left 0.1098 0.1081
vortex on lower wall

Height of bottom left 0.1312 0.1273
vortex along side wall

Length of bottom right 0.2676 0.2617
vortex on lower wall

Height of bottom right 0.3272 0.3203
vortex along side wall

of the first kind. As discussed above, an LU decomposition is performed outside the time
loop. For the 41× 41 grid, the condition number for the vortex sheet formulation was
6.68, whereas the condition number for the boundary vorticity formulation was 13.68. Both
condition numbers are small for a system of 164 linear equations. The reason that the first
kind of formulation yields a small condition number (on the same order as the second kind
of formulation) is because of the singular nature of the Green’s function in the domain
integral which results in large diagonal matrix elements.

The results of Ghia, Ghia, and Shen and the primitive-variable FEM results are steady-
state solutions. The vorticity FEM results are run through the transient starting with an
impulsively started upper lid. A comparison of the Neumann vorticity FEM and the Dirichlet
vorticity FEM is performed for the transient solution. Theu-component of velocity is shown
in Fig. 9 at the pointx = 0.5, y = 0.9 (the origin is located at the lower left-hand corner
of the cavity). Although there are some differences between the two methods in the early
transient, at the field point (x = 0.5, y = 0.9), the largest discrepancy in theu-component
of velocity at the field point after the first second is 0.0041%, the largest discrepancy in
the v-component of velocity is 0.0013%, and the largest discrepancy in the vorticity is
0.0085%. Further, for more realistic situations in which the initial and boundary data are
not discontinuous, this level of agreement between the two methods could be expected even
in the very early transient.

Finally as discussed in Section 3.2, the accuracy of the numerical quadratures used in
the discretized Galerkin GHD can be assessed by taking column sums of the associated
linear system of equations. Analytic values for the column sums can be determined for
the Dirichlet problem from Eq. (31) and for the Neumann problem from Eq. (29). For
the Dirichlet problem on the uniform 21× 21 grid, the analytic column sum is given by
π /800 for finite element nodal basis functions associated with corner nodes andπ /400 for
finite element nodal basis functions associated with edge nodes. The calculated column
sums for finite element nodal basis functions associated with corner nodes agreed to 14
significant figures. The result to six significant figures is given by 3.92732E-3, which shows
a relative error of 8.4599E-5 compared to the analytic value. The calculated column sums
for nodal basis functions associated with edge nodes agreed to six significant figures given
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FIG. 9. Transient results for theu-component of velocity at the pointx = 0.5, y = 0.9. The inset is a blow-up
of the plot for early times.

by 7.85397E-3, which shows a relative error of 1.2528E-6. For the Neumann problem on the
uniform 21× 21 grid, the analytic column sum is given byπ /20 for all boundary element
nodal basis functions associated with corner nodes andπ /10 for all other boundary element
nodal basis functions. The calculated column sums for the boundary element nodal basis
functions associated with corner nodes agreed to 14 significant figures. The result to six
significant figures is given by 0.157182, which shows a relative error of 6.5165E-4 with
the analytic value. The calculated column sums for all other boundary element nodal basis
functions agreed to 11 significant figures. This result to six significant figures is given
by 0.314159, which shows a relative error of 2.7827E-8. These calculated column sums
demonstrate the accuracy with which both the domain and boundary integrals are performed
in the Galerkin GHD.

5. CONCLUSIONS

Two approaches for determining boundary conditions appropriate for the vorticity form
of the Navier–Stokes equations are presented in this research. Both approaches are based
on a Galerkin implementation for the generalized Helmholtz decomposition (GHD). There
are several advantages both numerically and conceptually in using a Galerkin formulation
as opposed to the more traditional point-collocation formulations.

The accuracy of the Galerkin formulation is shown to be far more accurate than the point-
collocation formulation. Many researchers in the past have added constraint equations when
attempting to implement the GHD to solve for vortex sheet strengths. It is possible that a
constraint such as imposing Stokes theorem was necessary for point-collocation methods
in order that excess vorticity not accumulate within the domain over time because of poorly
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approximated vorticity creation on the boundary. No constraint equations are implemented
in the current formulation.

There has been considerable debate in the literature concerning which component of the
GHD should be imposed in order to satisfy the velocity boundary conditions. The conceptual
advantage of the Galerkin formulation is that it can be proven that the normal component
leads to a rank-deficient set of linear equations. Further, the tangential component leads to
an integral constraint that is implicitly satisfied by the GHD. This constraint equation can
be related to column sums associated with the linear equations which can be used to test the
accuracy of the integral evaluations of the GHD. Although the tangential component of the
GHD is used by necessity to determine either boundary vorticity or vortex sheet strengths,
the level of accuracy in satisfying the velocity boundary conditions in the tangential and
normal directions is of the same order of magnitude.

There is extra computational expense in implementing the Galerkin formulation of the
GHD compared to the point-collocation formulation. However, this computational expense
is performed only once outside the time loop. Further, it is quite likely that the Galerkin
formulation would actually be less expensive for a comparable level of accuracy.

There has also been some debate in the literature whether it was more appropriate to
determine boundary vorticity yielding Dirichlet boundary conditions or determine vortex
sheet strengths yielding Neumann boundary conditions. A direct comparison is performed
in this research (perhaps for the first time) showing that the two approaches are essentially
equivalent yielding numerical results that are typically only a fraction of a percent apart.
Solving for boundary vorticity results in a Fredholm integral equation of the first kind
whereas solving for vortex sheet strengths results in a Fredholm integral equation of the
second kind. Typically, Fredholm integral equations of the second kind result in more
stable numerical methods characterized by well-conditioned discretized linear systems.
However, in the case of the GHD because of the singular nature of the domain integrand,
both approaches yield very well conditioned discretized linear equations.

A Galerkin finite element method is implemented to solve the vorticity equation using
the GHD to provide appropriate boundary conditions as discussed above. The vorticity
equation is linearized again using the GHD to determine the interior velocities. The driven
cavity problem at a Reynolds number of 400 is considered as a benchmark. Both vorticity
formulations (Neumann and Dirichlet) are shown to provide more accurate results than
a primitive variable formulation for the same level of discretization. In fact, the vorticity
formulations using 1681 grid points compared very favorably to a multigrid finite difference
method using 16,641 grid points.
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